(1)

(1)	The eccentricity of the ellipse $9x^2 + 5y^2 - 30y = 0$ is					
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $\frac{3}{4}$	(d) None of these		
(2)	If A is a square matrix such that $ A = 2$, then for any positive integer n, $ A^n $ is equal to					
	(a) 0	(b) 2n	(c) 2 ⁿ	(d) n^2		
(3)	Value of a fox which $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{x}$ are coplanar is					
	(a) 2	(b) 4	(c) – 4	(d) 3		
(4)	The direction cosines of the normal to the plane $6x-3y-2z=1$ are					
	(a) $\left(\frac{6}{7}, 3, \frac{-2}{7}\right)$,	(b) (6,-3,-2)	(c) $\frac{1}{7}(6,-3,-2)$	(d) $\frac{1}{7}$ (6,3,2)		
(5)	If $p(n,5) = 60 p(n-1,3)$, then n is					
	(a) 6	(b) 15	c) 10	(d) 12		
(6)	$\lim_{x\to 0} \frac{\sin x - x}{x^3} \text{ is } \underline{\hspace{1cm}}$					
	(a) $\frac{1}{3}$	(b) $\frac{-1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{-1}{6}$		
(7)	If α, β are two different complex numbers such that $ \alpha = 1$, $ \beta = 1$, then the expression					
	$\left \frac{\beta - \alpha}{1 - \alpha \beta} \right $ equals					
	(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) None of these		
(8)	If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then $\cos^{-1} x + \cos^{-1} y$ is equal to					
	(a) $\frac{2\pi}{3}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) π		

(9)	Let x, y two variables and x>0, x y=1, then minimum value of $x + y$ is				
	(a) 1	(b) 2	(c) $2\frac{1}{2}$	(d) $3\frac{1}{3}$	
(10)	The number of ways in which 200 things can be divided into 100 sets, each of 2 things is				
	(a) $\frac{(200)!}{2^{100}(100)!}$	(b) $\frac{(200)!}{2^{100}}$	(c) $\frac{(200)!}{(100)!}$	(d) $\frac{(200)!}{(100)!(100)!}$	
(11)	The term independent of x in $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$ is				
	(a) $\frac{7}{18}$	(b) $\frac{5}{18}$	(c) $\frac{11}{18}$	(d) $\frac{13}{18}$	
(12)	Sets A and B have 3 and 6 elements respectively what can be the minimum number of elements in $A \cup B$?				
	(a) 3	(b) 6	(c) 9	(d) 18	
(13)	Set A has 3 elements and set B has 4 elements. The total number of injections (one one mappings) that can be defined from A to B is				
	(a) 144	(b) 12	(c) 24	(d) none of these.	
(14)	Area of the triangle	formed by (1,-4), (3,-	-2) and (-3,16) is		
	(a) 40	(b) 48	(c) 24	(d) none of these.	
(15)	$\int \frac{(1+\log x)^2}{x} dx \text{ is equal to } \underline{\hspace{1cm}}$				
	(a) $1 + \log x$	(b) $3(1 + \log x)^3$	$(c) \frac{1}{3} \left(1 + \log x\right)^3$	(d) None of these	
(16)	If the third term of an A-P is 12 and the seventh term is 24, then the 10 th term is				
	(a) 36	(b) 39	(c) 30	(d) 33	
(17)	The lines $2x-3y=5$ and $3x-4y=7$ are the diameters of a circle of area 154 square units. Then the equation of the circle is				

(a) $x^2 + y^2 + 2x - 2y = 62$ (b) $x^2 + y^2 + 2x - 2y = 47$

(c) $x^2 + y^2 - 2x + 2y = 47$ (d) $x^2 + y^2 - 2x + 2y = 62$

The sum of the digits in the unit place of all the numbers formed with the help of 3, 4, 5, (18)6 taken all at a time is _____

(a) 18

(b) 108

(c) 432

(d) 144

The coefficient of x^4 in $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is _____ (19)

(a) $\frac{405}{256}$ (b) $\frac{504}{259}$ (c) $\frac{450}{260}$

(d) None of these

A unit vector perpendicular to each of the vectors, $-6\hat{i} + 8\hat{k}$, $8\hat{i} + 6\hat{k}$ form a right (20)handed system is _____

(a) $-\hat{j}$ (b) \hat{j} (c) $\frac{1}{10} \left(6\hat{i} + 8\hat{k} \right)$ (d) $\frac{1}{10} \left(-6\hat{i} + 8\hat{k} \right)$

ANSWERS:

1. (b), 2. (c), 3. (c). 4. (c), 5. (c), 6. (a), 7. (b), 8. (b), 9. (c), 10. (a), 11. (a), 12. (b), 13. (c), 14. (c)

15. (c), 16. (d), 17. (c), 18. (b), 19. (a), 20. (b)